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PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 116, Number 1, September 1992

COGROWTH OF REGULAR GRAPHS

S. NORTHSHIELD

(Communicated by Lawrence F. Gray)

ABSTRACT. Let & be a d-regular graph and T the covering tree of & . We
define a cogrowth constant of & in T and express it in terms of the first
eigenvalue of the Laplacian on & . As a corollary, we show that the cogrowth
constant is as large as possible if and only if the first eigenvalue of the Lapla-
cian on & is zero. Grigorchuk’s criterion for amenability of finitely generated
groups follows.

In this note, we shall relate the first eigenvalue of the Laplacian on a connected
regular graph to the size of the kernel of the universal covering map. The
main results have been proven in [C, G, P]. The proof presented here appears
simpler; it depends on the explicit formula for minimal positive solutions of
AF +¢F =—1I.

Let & be a connected simple graph with constant vertex degree d > 3,
T be the universal covering tree of &, and 6 the covering map (i.e., 0 is a
vertex surjection of 7 on & that preserves adjacency and vertex degree). We
let T and & denote the vertex sets of the corresponding graphs. Note that T
has constant vertex degree d . Since T is connected, 7 may be considered a
metric space with the usual graph metric  (Jd(x, y) is the length of the shortest
path connecting x and y). For x € T and n > 0, let [x] = 6~1(0(x)) and
Sn(x)={y:d(x, y)=n}. For x, y € T, note that

limsup |[y] N Sy(x)['/* =inf{ 1> 0: Y 47°%9 <00
n—oo ze[y]
and is thus independent of x and y. We call this number, cogr(7, Z), the
cogrowth constant of & in T .
For x,y vertices of a graph, we write xEy if x and y are connected by
an edge. For x,y e T, let

q(x,y)={

Note that ¢ is the transition matrix of the simple random walk on 7 . Let g(®
denote the nth power of gq. For a, b€ % and x € 6~!(a), since 6 takes the

4 if xEy,
0 otherwise.
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simple random walk on T to the simple random walk on &,

(1) p"a,b)= > q"(x,y)

y€eo=1(b)

where p is the transition matrix of the simple random walk on & . We define
A=p-1,G=Y,5,p™,andfor e >0, G* =Y ,5,p™/(1—¢)"*!. Similarly,
we define Ar, F, and F¢ as above with p replaced by ¢.

A and A7 are the Laplacians on & and T, respectively. We call Az and
At the first eigenvalues of A and Ar, respectively. Since T is d-regular,

(2) Ar=1-2(d-1)"%/d
(see [DK]). Also,
(3) Az =sup{A:3f > 0:Af +A1f <0}

(see [DK] or [N]). It is true that Az < Ar (see [N]).
For e <Ar,let a(e)=d(1-¢)/(d—-1), b=1/(d-1), and o(¢) < 1(¢) be
the (real) roots of ¢t = a(e) — b/t. Note that

o(e) = {d(1 —¢) — [d*(1 —¢)* — 4d + 4]"/%}/2(d - 1),
7(e) = {d(1 — &) + [d*(1 — &)* — 4d + 4]"/%}/2(d - 1).
In particular, o(¢) is increasing and 7(¢) is decreasing on [0, Ar).

Lemma. For ¢ € [0, Ar), F¢(x,y)=0()’* /(1 —¢—a(e)).

Proof. Let ¢ € [0, Ar). For A € (e, Ar), there exists a function f > 0 such
that Arf+4f <0. Let v = —(Arf+¢f)/(1 —¢) and r = q/(1 — ¢). Note
that v > 0 and f = v +¢qf. By induction, f = Yo e, r®v + rn+hf >
Sockcn 'V since f > 0. Letting n — oo, f > Y ,5orv = (1 —¢)Fev.
Since v > 0, F¢ exists. -

By the symmetry of T, there exists a sequence g, ¥, ... such that for any
x,if d(x,y)=n then Fé(x,y)=7y,. Since (Ar+¢)F¢ = —I, it follows that
Vk+2 = AVk41 — by and y; — (1 —&)yo = —1. Let rx = ¥y /7%, = a/2, and
v = [a?/4 — b]'/2. By the addition of angle formulae for hyperbolic functions,
it is easy to verify that for all ry there exists 6, so that

4+ vtanh(0 + pn) ifrg € (o, 1),
rn = { u+vcoth(@ + pn) ifro ¢ [0, 1],
ro if g€ {o, 1},

where p =tanh(v/u).

Clearly, if ry # ¢ then r, — 7, and thus lim,_, . y,],/ " = 1. Itis easy to verify
that lim,_. 7./" is increasing as a function of ¢ (since p™ > 0). Therefore
r. = o since 7 is decreasing. It follows that F¢(x,y) = ca®*-Y) and, since
T1—-(1-&p=-1,c=1/[1-e—-0]. O

Theorem. (a) cogr(T, &) < {d(1 — Ag) + [d*(1 — Ag)? — 4d + 4]'/?}/2,

(b) If g # Ar then cogr(T, %) = {d(1 - ) +[d*(1 — Az)> — 4d +4]'/2}/2.
Proof. (a) If Ae = 0 then cogr(T,¥) < limsup,_ . |S,(x)|'/" =d -1 =
1/o(Ae).
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Let Az >0 and ¢ € (0, Ag). As in the proof of the lemma, G° exists. Since

> a0 =Y Fé(x, z) = cG*(6(x), B(y)) < o0,
z€[y] z€y]

cogr(T, %) < 1/a(e). Since o(e) is increasing, the result follows by letting &
approach Ag .
(b) Let ¢ € [0, Ar). If cogr(T, %) < 1/a(¢), then

G (0(x),0(0)=> Fi(x,z)=)Y o°*?<oo
zZE€[y] z€[y]
and thus G*¢ exists. Fix g € & andlet f(x) = G%(g, x). Clearly Arf+¢ef <0
and f > 0 and, therefore, ¢ < Az . Assume Ag # Ar (and thus Ag < Ar). If
Ae < Ag +k < Ar, then cogr(T,Z) > 1/a(Ag + k). Since 1/o is decreasing
on [0, Ag], cogr(T, %) > 1/o(Ag). O

Corollary 1. Let & be connected and d-regular. Then cogr(T, %) =d — 1 iff
Ae =0.

Let A be a finitely generated discrete group with k generators, F the free
group with k generators, ¢ the canonical mapping of F onto A, and K =
ker @ .

The map ¢ induces a covering map 6 from T onto & where T and & are
the Cayley graphs of F and A respectively. As is well known, A is amenable
iff Az =0 (see [K, DK, DGJ).

By [P], lim,_ |K N S;,|'/?" exists.

Corollary 2. A is amenable iff lim,_ . |K N.Sy,|'/?" =2k — 1.
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