SUNY Plattsburgh Digital Commons @ SUNY Plattsburgh

Mathematics Faculty Publications

Mathematics

9-1992

Cogrowth of Regular Graphs

Sam Northshield SUNY Plattsburgh

Follow this and additional works at: http://digitalcommons.plattsburgh.edu/mathematics facpubs

Recommended Citation

Northshield, S. (1992). Cogrowth of Regular Graphs. Proceedings of the American Mathematical Society, 116 (1), 203-205.

This Article is brought to you for free and open access by the Mathematics at Digital Commons @ SUNY Plattsburgh. It has been accepted for inclusion in Mathematics Faculty Publications by an authorized administrator of Digital Commons @ SUNY Plattsburgh.

COGROWTH OF REGULAR GRAPHS

S. NORTHSHIELD

(Communicated by Lawrence F. Gray)

ABSTRACT. Let $\mathscr G$ be a d-regular graph and T the covering tree of $\mathscr G$. We define a cogrowth constant of $\mathscr G$ in T and express it in terms of the first eigenvalue of the Laplacian on $\mathscr G$. As a corollary, we show that the cogrowth constant is as large as possible if and only if the first eigenvalue of the Laplacian on $\mathscr G$ is zero. Grigorchuk's criterion for amenability of finitely generated groups follows.

In this note, we shall relate the first eigenvalue of the Laplacian on a connected regular graph to the size of the kernel of the universal covering map. The main results have been proven in [C, G, P]. The proof presented here appears simpler; it depends on the explicit formula for minimal positive solutions of $\Delta F + \varepsilon F = -I$.

Let $\mathscr G$ be a connected simple graph with constant vertex degree $d\geq 3$, T be the universal covering tree of $\mathscr G$, and θ the covering map (i.e., θ is a vertex surjection of T on $\mathscr G$ that preserves adjacency and vertex degree). We let T and $\mathscr G$ denote the vertex sets of the corresponding graphs. Note that T has constant vertex degree d. Since T is connected, T may be considered a metric space with the usual graph metric δ ($\delta(x,y)$) is the length of the shortest path connecting x and y). For $x \in T$ and $n \geq 0$, let $[x] = \theta^{-1}(\theta(x))$ and $S_n(x) = \{y : \delta(x,y) = n\}$. For $x,y \in T$, note that

$$\limsup_{n\to\infty} |[y] \cap S_n(x)|^{1/n} = \inf\left\{\lambda > 0: \sum_{z\in[y]} \lambda^{-\delta(x,z)} < \infty\right\}$$

and is thus independent of x and y. We call this number, $cogr(T, \mathcal{G})$, the cogrowth constant of \mathcal{G} in T.

For x, y vertices of a graph, we write xEy if x and y are connected by an edge. For x, $y \in T$, let

$$q(x, y) = \begin{cases} \frac{1}{d} & \text{if } xEy, \\ 0 & \text{otherwise.} \end{cases}$$

Note that q is the transition matrix of the simple random walk on T. Let $q^{(n)}$ denote the nth power of q. For a, $b \in \mathcal{G}$ and $x \in \theta^{-1}(a)$, since θ takes the

Key words and phrases. Regular graph, covering tree, amenable group, random walk.

Received by the editors January 25, 1991.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 60J15; Secondary 05C05, 05C25, 43A07.

simple random walk on T to the simple random walk on \mathcal{G} ,

(1)
$$p^{(n)}(a, b) = \sum_{y \in \theta^{-1}(b)} q^{(n)}(x, y)$$

where p is the transition matrix of the simple random walk on \mathscr{G} . We define $\Delta \equiv p-1$, $G \equiv \sum_{n\geq 0} p^{(n)}$, and for $\epsilon \geq 0$, $G^{\epsilon} \equiv \sum_{n\geq 0} p^{(n)}/(1-\epsilon)^{n+1}$. Similarly, we define Δ_T , F, and F^{ϵ} as above with p replaced by q.

 Δ and Δ_T are the Laplacians on $\mathscr G$ and T, respectively. We call $\lambda_{\mathscr G}$ and λ_T the first eigenvalues of Δ and Δ_T , respectively. Since T is d-regular,

(2)
$$\lambda_T = 1 - 2(d-1)^{1/2}/d$$

(see [DK]). Also,

(3)
$$\lambda_{\mathscr{G}} = \sup\{\lambda: \exists f > 0: \Delta f + \lambda f \le 0\}$$

(see [DK] or [N]). It is true that $\lambda_{\mathscr{G}} \leq \lambda_T$ (see [N]).

For $\varepsilon \le \lambda_T$, let $a(\varepsilon) = d(1-\varepsilon)/(d-1)$, b = 1/(d-1), and $\sigma(\varepsilon) \le \tau(\varepsilon)$ be the (real) roots of $t = a(\varepsilon) - b/t$. Note that

$$\sigma(\varepsilon) = \{d(1-\varepsilon) - [d^2(1-\varepsilon)^2 - 4d + 4]^{1/2}\}/2(d-1),$$

$$\tau(\varepsilon) = \{d(1-\varepsilon) + [d^2(1-\varepsilon)^2 - 4d + 4]^{1/2}\}/2(d-1).$$

In particular, $\sigma(\varepsilon)$ is increasing and $\tau(\varepsilon)$ is decreasing on $[0, \lambda_T)$.

Lemma. For
$$\varepsilon \in [0, \lambda_T)$$
, $F^{\varepsilon}(x, y) = \sigma(\varepsilon)^{\delta(x, y)}/(1 - \varepsilon - \sigma(\varepsilon))$.

Proof. Let $\varepsilon \in [0, \lambda_T)$. For $\lambda \in (\varepsilon, \lambda_T)$, there exists a function f > 0 such that $\Delta_T f + \lambda f \leq 0$. Let $v = -(\Delta_T f + \varepsilon f)/(1 - \varepsilon)$ and $r = q/(1 - \varepsilon)$. Note that v > 0 and f = v + qf. By induction, $f = \sum_{0 \leq k \leq n} r^{(k)} v + r^{(n+1)} f \geq \sum_{0 \leq k \leq n} r^{(k)} v$ since f > 0. Letting $n \to \infty$, $f \geq \sum_{k \geq 0} r^{(k)} v = (1 - \varepsilon) F^{\varepsilon} v$. Since v > 0, F^{ε} exists.

By the symmetry of T, there exists a sequence γ_0 , γ_1 , ... such that for any x, if $\delta(x, y) = n$ then $F^{\varepsilon}(x, y) = \gamma_n$. Since $(\Delta_T + \varepsilon)F^{\varepsilon} = -I$, it follows that $\gamma_{k+2} = a\gamma_{k+1} - b\gamma_k$ and $\gamma_1 - (1 - \varepsilon)\gamma_0 = -1$. Let $r_k = \gamma_{k+1}/\gamma_k$, $\mu = a/2$, and $\nu = [a^2/4 - b]^{1/2}$. By the addition of angle formulae for hyperbolic functions, it is easy to verify that for all r_0 there exists θ , so that

$$r_n = \begin{cases} \mu + \nu \tanh(\theta + \rho n) & \text{if } r_0 \in (\sigma, \tau), \\ \mu + \nu \coth(\theta + \rho n) & \text{if } r_0 \notin [0, \tau], \\ r_0 & \text{if } r_0 \in \{\sigma, \tau\}, \end{cases}$$

where $\rho = \tanh(\nu/\mu)$.

Clearly, if $r_0 \neq \sigma$ then $r_n \to \tau$, and thus $\lim_{n \to \infty} \gamma_n^{1/n} = \tau$. It is easy to verify that $\lim_{n \to \infty} \gamma_n^{1/n}$ is increasing as a function of ε (since $p^{(n)} \geq 0$). Therefore $r_n \equiv \sigma$ since τ is decreasing. It follows that $F^{\varepsilon}(x, y) = c\sigma^{\delta(x, y)}$ and, since $\tau_1 - (1 - \varepsilon)\gamma_0 = -1$, $c = 1/[1 - \varepsilon - \sigma]$. \square

Theorem. (a) $cogr(T, \mathcal{G}) \leq \{d(1 - \lambda_{\mathcal{G}}) + [d^2(1 - \lambda_{\mathcal{G}})^2 - 4d + 4]^{1/2}\}/2$, (b) If $\lambda_{\mathcal{G}} \neq \lambda_T$ then $cogr(T, \mathcal{G}) = \{d(1 - \lambda_{\mathcal{G}}) + [d^2(1 - \lambda_{\mathcal{G}})^2 - 4d + 4]^{1/2}\}/2$. Proof. (a) If $\lambda_{\mathcal{G}} = 0$ then $cogr(T, \mathcal{G}) \leq \limsup_{n \to \infty} |S_n(x)|^{1/n} = d - 1 = 1/\sigma(\lambda_{\mathcal{G}})$. Let $\lambda_{\mathscr{G}} > 0$ and $\varepsilon \in (0, \lambda_{\mathscr{G}})$. As in the proof of the lemma, G^{ε} exists. Since

$$\sum_{z\in [y]} \sigma^{\delta(x\,,\,z)} = c \sum_{z\in [y]} F^\varepsilon(x\,,\,z) = c G^\varepsilon(\theta(x)\,,\,\theta(y)) < \infty\,,$$

 $cogr(T, \mathcal{G}) \le 1/\sigma(\varepsilon)$. Since $\sigma(\varepsilon)$ is increasing, the result follows by letting ε approach $\lambda_{\mathcal{G}}$.

(b) Let $\varepsilon \in [0, \lambda_T)$. If $cogr(T, \mathcal{G}) < 1/\sigma(\varepsilon)$, then

$$G^{\varepsilon}(\theta(x), \theta(y)) = \sum_{z \in [y]} F^{\varepsilon}(x, z) = \sum_{z \in [y]} \sigma^{\delta(x, z)} < \infty$$

and thus G^{ε} exists. Fix $g \in \mathcal{G}$ and let $f(x) = G^{\varepsilon}(g, x)$. Clearly $\Delta_T f + \varepsilon f \leq 0$ and f > 0 and, therefore, $\varepsilon \leq \lambda_{\mathscr{G}}$. Assume $\lambda_{\mathscr{G}} \neq \lambda_T$ (and thus $\lambda_{\mathscr{G}} < \lambda_T$). If $\lambda_{\mathscr{G}} < \lambda_{\mathscr{G}} + \kappa \leq \lambda_T$, then $\operatorname{cogr}(T, \mathscr{G}) \geq 1/\sigma(\lambda_{\mathscr{G}} + \kappa)$. Since $1/\sigma$ is decreasing on $[0, \lambda_{\mathscr{G}}]$, $\operatorname{cogr}(T, \mathscr{G}) \geq 1/\sigma(\lambda_{\mathscr{G}})$. \square

Corollary 1. Let \mathscr{G} be connected and d-regular. Then $cogr(T,\mathscr{G}) = d-1$ iff $\lambda_{\mathscr{G}} = 0$.

Let A be a finitely generated discrete group with k generators, F the free group with k generators, ϕ the canonical mapping of F onto A, and $K = \ker \theta$.

The map ϕ induces a covering map θ from T onto $\mathscr G$ where T and $\mathscr G$ are the Cayley graphs of F and A respectively. As is well known, A is amenable iff $\lambda_{\mathscr G}=0$ (see [K, DK, DG]).

By [P], $\lim_{n\to\infty} |K \cap S_{2n}|^{1/2n}$ exists.

Corollary 2. A is amenable iff $\lim_{n\to\infty} |K \cap S_{2n}|^{1/2n} = 2k-1$.

REFERENCES

- [C] J. L. Cohen, Cogrowth and amenability of discrete groups, J. Funct. Anal. 48 (1982), 301–309
- Y. Derriennic and Y. Guivarc'h, Theoreme de renouvellement pour les groupes moyennables,
 C. R. Acad. Sci. Paris Ser. A 277 (1973), 613-615.
- [DK] J. Dodziuk and L. Karp, Spectral and function theory of combinatorial Laplacians, Contemp. Math., vol. 73, Amer. Math. Soc., Providence, RI, 1988, pp. 25-40.
- [G] R. I. Grigorchuk, Symmetric random walks on discrete groups, Multi-Component Random Systems (Dobrushin and Sinai, eds.), Dekker, New York and Basel, 1980, pp. 285-325.
- [K] H. Kesten, Full Banach mean values on countble groups, Math. Scand. 7 (1959), 146-156.
- [N] S. Northshield, Gauge and conditional gauge on negatively curved graphs, Stochastic Anal. Appl. 9 (1991), 461-482.
- [P] A. T. Paterson, Amenability, Math. Surveys Monographs, vol. 29, Amer. Math. Soc., Providence, RI, 1988.

Department of Mathematics, State University of New York at Plattsburgh, Plattsburgh, New York 12901

E-mail address: northssw@snyplava.bitnet